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A List of Properties

� Linear

� Finite type

� Algebraic

� Connected

� Reduced

� Irreducible

� Integral

� Smooth

� Unipotent

� Solvable

� Reductive

� Semi-simple

� Algebraic Torus

� Split Algebraic torus

� Split

� Quasi-split

� Isotropic

A List of Distinguished Subgroups

� Derived Subgroup – (solvable)

� Unipotent Radical – (reductive)

� Solvable Radical – (semisimple)

� Maximal Torus – (split)

� Borel – (quasi-split)

� Neutral component

� Levi Subgroup

� Normalizer of torus

� Centralizer of torus

� Weyl group

� Parabolic

� Standard parabolic

We take the functor of points approach given in [Int]; it would proabably be a good idea to also go
through [Mil]. We treat only of groups schemes over a field k. We denote the algebraic closre of k by
k̄ and the seperable closure ksep.

An affine group scheme over k is a representable functor

G : Algk → Groups

A 7→ HomAlgk(R,A)

The algebra that represents G is denoted O(G). Notice that there is an implicit condition that
HomAlgk(R,A) actually forms a group for every A, which is not always the case for an arbitrary R,
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for instance the trivial k-algebra will have empty hom sets except for between itself, and the empty
set is not a group. am I right

about thisThe first example is the group scheme that sends an algebra to its multiplicative units. We denote
this Gm this is represented by the k algebra

k[x, y]/(xy − 1)

Another key example is GLV sending an algebra A to the A-module automorphisms V ⊗kA → V ⊗kA,
or simply the n× n matricies with A entries. This is represented by

k[{xij : 1 ≤ i, j ≤ n}][y]/(ydet(xij)− 1)

A representation of an affine group scheme (from now on GS) G is a morphism (natural trans-
formation) of GS

G → GLV

We say that a representation is faithful if the associated map

O(GLV ) → O(G)

is surjective would usually
make more
sense to be in-
jective. Is it be-
cuase we are in
the opposite cat
or something

A GS is linear if there exists some faithful representation.
It is of finite type if it is represented by a finitely generated algebra.
An affine algebraic group (AAG) is an GS of finite type over a field.

Theorem. All AAG are linear.

Let G be a GS then G is

� connected iff the only idempotents of O(G) are 0 and 1

� reduced iff O(G) has no (non-zero) nilpotent elements

� irreducible iff the nilradical (collection of nilpotent elements) of O(G) is a prime ideal

� integral iff O(G) is an integral domain

� smooth iff O(G) is formally smooth

Lemma. If k ⊆ C then G is connected iff G(C) is connected in the analytic topology.

A subgroup scheme H ⊆ G is a subscheme (not defined here) such that on points H(A) ⊆ G(A)
we have subgroups.

If G is a AAG then there is a subgroup scheme G◦ such that G◦ is

� normal

� contains the identity

� maximally connected

G◦ is called the neutral component is it unique or
are they conju-
gate?

Recall that an element x ∈ Mn(k) is called

� semisimple if there is some g ∈ Mn(k̄) such that g−1xg is diagonal

� nilpotent if there is some n ∈ N such that xn = 0

� unipotent if x− I is nilpotent
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Theorem. If G is a linear GS then an element r ∈ G(R) is —-one of the things above—- if there
exists a faithful representation of G, ρ such that ρ(r) —-is that thing—-.

An AAG is called unipotent if every representation has a fixed vector.
The derived subgroup of an AAG G is the intersection of all normal subgroups (normal on points)

N ⊆ G such that G/N is commutative. We denote this Gdet or DG.
We say G is solvable if there is some n ∈ N such that Dn(G) is trivial.
The unipotent radical of G, denoted RU (G), is the maximal connected, normal and unipotent

subgroup. The solvable radical of G, denoted R(G), is the maximal connected, normal and solvable
subgroup.

A smooth, connected AAG G is reductive iff RU (Gk̄) = {1} and semi-simple iff R(Gk̄) = {1}.
A subgroup M ⊆ G of an AAG is a Levi subgroup iff the following is exact

1 → Mk̄ ↪→ Gk̄
π−→ Gk̄/RU (Gk̄) → 1

An algebraic torus is an AAG T such that for some n ∈ N Tk̄
∼= Gn

m. We say that T splits (as
a torus) if T ∼= Gn

m. T is a maximul torus in G if T ⊆ G and Tk̄ is a maximal element of the set of
tori (ordered by inclusion).

If T ⊆ G is a torus inside a reductive group then NG(T ) is the normalizer and CG(T ) is its
centralizer. The Weyl group is W (G,T ) = NG(T )/CG(T ).

Lemma. T is a maximal torus iff CG(T ) = T .

A reductive group is split if there exists a split maximal torus.
If G is reductive then B ⊆ G is called a Borel iff Bk̄ is a maxima, smooth, connected and solvable

subgroup of Gk̄. A smooth subgroup P ⊆ G is parabolic if Pk̄ contains a borel subgroup of Gk̄.
A reductive group is quasi-split if it contains a Borel. If G contains a split torus it is called

isotropic.
Given a minimal parabolic subgroup P0 ⊆ G then the parabolic subgroups that contain P0 are

called standard .

1 Working out GL2

We used [?] for some help on the examples. Many theorems again from [Mil]. I will try to make explicit
what I am and am not ”black boxing” (taking as axioms).

It is clear that GL2 is an affine algebraic group we further claim that represented by
...

Axiom. GL2 is reductive.

1.1 Borels and Tori

We will check that some things are Borels and Tori, as of now we have no systematic way of finding
all of them (they are conjugate over an algebraically closed field.) . systamatize

Lemma.

B =

(
∗ ∗
0 ∗

)
is a borel.

Axiom. B is an affine group scheme that is smooth and connected.

Theorem. Pseudo-reductive groups by Conrad, Gabber and Prasad (Definition A.1.14, lightly edited)
The derived group D(G) of a smooth group G of finite type over a field k is the unique smooth

closed k-subgroup such that (D(G))(K) is the commutator subgroup of G(K) for any algebraically closed
extension K/k.
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have better
proof envi-
ronment in
minipreable.

Proof (Of Lemma). What we will show is that it is maximal solvable. To see that it is solvable we
will look at its points for K/k an algebraicly closed extension.

D(B)(K) = [B,B](K) =

(
1 ∗
0 1

)
by simply computing the commutator of two arbitrary elements of B.(

a b
0 d

)(
e f
0 h

)(
a b
0 d

)−1 (
e f
0 h

)−1

=

(
1 af + bh− df − eb
0 1

)
Then by substituting in a, d, e, h = 1 we get that(

1 af + bh− df − eb
0 1

)
= I

Hence
D2(B)(K) = {e}

So B is solvable.
To see that it is maximal: If B is contained in a subgroup B ̸= B′ ⊆ GL2 then at least B′ has

one element with non-zero bottom left entry say a ∈ K (for its K points), and therefore because it is a
subgroup we know that

⟨a⟩ ..= ⟨
(
∗ ∗
a ∗

)
⟩ ⊆ B′

Now we claim that ⟨a⟩ = GL2. I think if you multiply with an arbitrary element you will get something prove this.

in the bottom left that depends on all the variables and you will be able to make the entries anything
you want.

The final fact that we need is that GL2 is not solvable.

D(GL2)(K) = SL2(K)

by comparing the determinants we know that [GL2, GL2] ⊆ SL2 and

Axiom. SL2 ⊆ [GL2, GL2]
Again we think
its a calcula-
tion that can be
done..

and
[SL2, SL2](K) = SL2(K)

becuase

Axiom. SL2 has no (non-trivial) normal subgroups.

□

Lemma.

T =

(
∗ 0
0 ∗

)
is a Torus

Proof. In fact it is a split torus because it is clearly iso to G2
m (neither of the diagonals can be zero

or it wont be invertible).
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1.2 Root Datum

The characters and co-characters of T above can be gotten from general theory [Mil, XIV.4.8]

Theorem. If G = Hom(k[G],−) where k[G] is the group algebra of an abelian group G then X∗(G) =
G.

Which for us works out to mean that

Lemma. X∗(T ) ∼= Z2 via [(
t1 0
0 t2

)
7→ tk1

1 tk2
2

]
7→ (k1, k2)

Note that X∗(T ) ∼= Z2 becuase the natural transformations are specified by the maps written down
(all of the constituent maps are of this form).

For co-characters [?] states that we also have for a split torus that X∗(T ) ∼= Zrank(T ), find a reference
for the proof,
not in MilneLemma. X∗(T ) ∼= Z2 via

(k1, k2) 7→
[
t 7→

(
tk1 0
0 tk2

)]
Which as long as we beleive the above is valid, by checking that these are infact natrual and that

they are linearly independent (hence span the free Z module).

Axiom. Lie(GL2) = M2(k)
check this, in
particular the
field its over

Then we want to find the roots, so we will have to decompose the following action

Ad : GL2 → GLLieGL2

GL2(R) → GLM2(k)(R) ..= M2(k)⊗k R

Axiom.
M2(k)⊗k R ∼= M2(R)

Where g.m = gmg−1, as R valued matricies. Then the weight spaces are [Int]

gα ⊗k R ..= {X ∈ Mn(R) : ∀t ∈ T (R) Ad(t).X = α(t)X}

That is, the weight spaces are the set of ”eigenvectors” of the adjoint action with ”eigenvalue” α.
We have a basis for our roots above and so we will compute an arbitrary weight space by solving

the equation (
t1 0
0 t2

)(
a b
c d

)(
t1 0
0 t2

)−1

=

(
a t1t

−1
2 b

t2t
−1
1 c d

)
= tk1

1 tk2
2

(
a b
c d

)
Where ti ∈ R× and at least one ki ̸= 0. To find the roots we need gα⊗kR ̸= 0 for all R so it is sufficient
to consider an algebraically closed extension of K/k. In particular K is infinite and K× = K−0. Thus
the condition above implies that

a = d = 0

because multiplication by a unit gives a bijection from K → K. Rearanging we require

c = tk1+1
1 tk2−1

2 c, b = tk1−1
1 tk2+1

2 b

These are mutually exclusive, in the sense that if k1 = 1, k2 = −1 there is no condition on b and hence
it can be anything but it forces c to be zero. Likewise for k1 = −1, k2 = 1 freeing c but enforcing b = 0.
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Thus the roots are (−1, 1) and (1,−1) with respective root spaces(
0 0
∗ 0

)
,

(
0 ∗
0 0

)
Now for the corrots. We require (by definition) that the coroots satisfy

⟨α, α∨⟩ ..= α∨ ◦ α = 2

This plus the ansatz from Milne or elsewhere makes this easy. Whats hard is understanding where this inner product came
from, I mean its given as a definition in some but in Getz and Hahn they say something crazy.

2 Working out Sp2n

The title might be a little bit grandiose, I will probably only do Sp4.
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